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Soft triaxial rotor in the vicinity of γ = π/6 and its extensions
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Abstract. The collective Bohr Hamiltonian is solved for the soft triaxial rotor around γ0 = π/6 with a
displaced harmonic oscillator potential in γ and a Kratzer-like potential in β. The properties of the spectrum
are outlined and a generalization for the more general triaxial case with 0 < γ < π/6 is proposed.

PACS. 21.60.Ev Collective models – 21.10.Re Collective levels

Analytic or approximated solutions of the Bohr collec-
tive model may be given for a variety of different model
potentials. The functional dependence of this potential on
the deformation (β) and asymmetry (γ) variables deter-
mines the properties of the spectrum and eigenfunctions.
These solutions are not limited to rigid cases (where either
one or two of the variables are constrained to take a fixed
value), but may be found in the case of soft potentials
too (here the potential function is represented by a well
and it is associated with extended wave functions). A soft
solution represents a more physical case than a rigid one
and a mathematical benchmark for our understanding of
collective states in nuclear spectroscopy. Recently, Iachello
introduced new solutions based on the infinite square well
potential, named E(5), X(5) and Y (5), to describe the
critical point of shape phase transitions [1]. These solu-
tions have initiated on one side intense and successful ef-
forts aimed at the identification of the predicted patterns
(nuclear spectra and electromagnetic properties) in exper-
imentally observed spectroscopic data. On the other side
a number of theoretical studies have explored new ana-
lytic solutions in various cases, from γ-unstable to axial
rotor [2].

A solution of the stationary Schrödinger equation

HBΨ(β, γ, θi) = EΨ(β, γ, θi), (1)

for the Bohr collective Hamiltonian, HB = Tβ+Tγ+Trot+
V (β, γ) may be achieved for the β-soft, γ-soft triaxial rotor
making use of a harmonic potential in γ and Coulomb-like
and Kratzer-like potentials in β (see fig. 1):

V (β, γ) = V1(β) +
V2(γ)

β2
, (2)
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Fig. 1. Polar plot of the potential V (β, γ) discussed in the text
with minimum in γ0 = π/6 and β = 0.2.

with

V1(β) = −
A

β
+

B

β2
, V2(γ) = C(γ − γ0)

2. (3)

Unimportant multiplicative factors have been omitted
here for simplicity. The Schrödinger equation above, (1),
with the choice (2), is separable and can be solved in the
vicinity of γ0 = π/6, thus providing a paradigm for the
spectrum of soft triaxial rotors.

It has been shown in [3] that the γ-angular part in
the present case gives rise to a straightforward extension
of the rigid triaxial rotor energy, also called Meyer-ter-
Vehn formula [4], in which now an additive harmonic term
appears, namely

ωL,R,nγ =
√
C(2nγ + 1) + L(L+ 1)−

3

4
R2 , (4)
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Fig. 2. Reduced energies of the lowest state of the β-band
(dashed line) and of a few lowest states of the ground-state
band (solid lines) as a function of B. The limits for the energy
levels when B →∞, that correspond to the rigid triaxial rotor
energies, are reported on the right side. Here we fixed C = 1.
From [3].

where R is the quantum number associated with the pro-
jection of the angular momentum on the intrinsic 1-axis
(that is a good quantum number for the γ = π/6 rotor [4]).

The solution of the equation in β depends on the par-
ticular choice of the β-potential and may results instead
in a non-trivial expression for the energy spectrum. Using
the Kratzer-like potential we obtain:

ε(nγ , nβ , L,R)=
A2/4

(
√

9/4+B + ωL,R,nγ+1/2 + nβ)2
. (5)

The negative anharmonicities of the energy levels with re-
spect to a simple rigid model are in qualitative agreement
with general trends as observed in experimental data. This
model is more general than the Davydov (rigid) model [5]:
in fact the rigid model is recovered when the potential well
becomes very narrow (that is when B →∞) as can be seen
on the right side of fig. 2.

Here we present the expression of the spectrum in an-
other well-known solvable case: the Davidson potential,
ADβ2 + BD/β2, discussed in [6,7] and references therein.
The spectrum may again be found in an analytical way.
We obtain

εD(nγ , nβ , L,R) =
√

AD

(

2nβ + τL,R,nγ + 5/2
)

, (6)

where τ is found from (τ + 1)(τ + 2) = BD − ωL,K,nγ .
Recently it has become possible to extend these re-

sults to soft triaxial rotors with a harmonic potential (as
in eq. (3) on the right) centered around any asymmetry
in the sector 0 < γ0 < π/3 by means of a group theo-
retical approach based on the su(1, 1) algebra [7]. Here
the labeling is more difficult since neither K nor R (quan-
tum numbers associated with the projections of the third
component of the angular momentum on the 3rd and 1st

intrinsic axis, respectively) are good quantum numbers,
but a classification of the states is still possible on the
basis of the remaining quantum numbers.

Retaining the same procedure used in the γ0 = π/6
case for the separation of variables we are faced with the
problem of solving the equation in γ that contains a rather
complicated rotational kinetic term (Here a simplification
like the one used in [1] (2nd paper) or [3] may not be
adopted). The components of the moment of inertia that
occur in that term are simplified here, neglecting fluctua-
tions in the γ-variable, in the following way

Aκ =
1

4 sin2(γ − 2πκ/3)
−→

1

4 sin2(γ0 − 2πκ/3)
. (7)

The equation in γ is then transformed in a set of cou-
pled differential equations by expanding the (general tri-
axial) wave functions in a basis of rotational (axial) wave
functions. Introducing also some standard trigonometric
approximations it is possible to define a realization of
the algebra su(1, 1) in terms of differential operators with
which, for each L, we can reduce the secular problem to an
algebraic equation. When the algebraic equation has a low
order it can be solved analytically, while for higher orders
one can always get a numerical (accurate) solution. The
results have the same structure of eq. (4): the “rotational
part”, that coincides in every detail with the well-known
solution of the rigid model, is accompanied by an additive
harmonic term, that takes into account the γ quanta.

Once ω is obtained, it must be used in the differen-
tial equation in β, that may be solved in standard ways,
depending again on the β-potential. This extension auto-
matically generates the particular results obtained above
when γ0 = π/6.

This model contains in total 3 parameters (2 from the
β and γ potentials, B and C, and one from the moments
of inertia, A3, or alternatively γ0) and may provide a sim-
ple model for the interpretation of collective spectra of
a large number of nuclei that do not posses axial symme-
try. The dependence of the reduced spectrum on the three
parameters is however non-linear and at present we have
only applied the model to spectroscopic data in a prelim-
inary way. A more complete description of the problem,
of the methodology used and applications will soon be
presented [7].
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